Representation functions for Jordanian quantum group $\boldsymbol{S} \boldsymbol{h}_{\boldsymbol{h}}(2)$ and Jacobi polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 333735
(http://iopscience.iop.org/0305-4470/33/20/302)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:09

Please note that terms and conditions apply.

Representation functions for Jordanian quantum group $S L_{h}(\mathbf{2})$ and Jacobi polynomials

N Aizawa \dagger
Department of Applied Mathematics, Osaka Women's University, Sakai, Osaka 590-0035, Japan

Received 18 January 2000

Abstract

The explicit expressions of the representation functions (D-functions) for Jordanian quantum group $S L_{h}(2)$ are obtained by combination of tensor operator technique and Drinfeld twist. It is shown that the D-functions can be expressed in terms of Jacobi polynomials as the undeformed D-functions can. Some of the important properties of the D-functions for $S L_{h}(2)$ such as Wigner's product law, recurrence relations and RTT-type relations are also presented.

1. Introduction

It is known that quantum deformation of Lie group $G L(2)$ with central quantum determinant is classified into two types [1]: the standard deformation $G L_{q}(2)$ [2] and the Jordanian deformation $G L_{h}(2)$ [3-5]. The representation theory of $G L_{q}(2)$ has been studied extensively and we know that its contents are quite rich (see, for instance, $[6,7]$). On the other hand, the representation theory of $G L_{h}(2)$ has not been developed yet. There are some works studying differential geometry on the quantum h-plane and on $S L_{h}(2)$ itself [8]. However, the representation functions for $G L_{h}(2)$, the most basic ingredient of representation theories, have not been known. Recently, Chakrabarti and Quesne [9] showed that the representation functions for two-parametric extension of $G L_{h}(2)[5,10]$ can be obtained from the standard deformed ones via a contraction method and gave the explicit form of the representation functions for some low-dimensional cases. In [11], the present author shows that the Jordanian deformation of symplecton for $s l(2)$ gives a natural basis for a representation of $S L_{h}(2)$ and he also gives another basis in terms of the quantum h-plane.

The purpose of this paper is to obtain explicit formulae for $S L_{h}(2)$ representation functions using the tensor operator technique and to investigate their properties. Representation functions are also called Wigner D-functions in physicist's terminology. We use both terms and restrict ourselves to the finite-dimensional highest-weight irreducible representations of $S L_{h}(2)$ in this paper. In order to make a comparison between D-functions for $S L_{q}(2)$ and $S L_{h}(2)$, let us recall some known properties of D-functions for $S L_{q}(2) \ddagger$: (a) Wigner's product law [13], (b) recurrence relations [13, 14], (c) orthogonality (d) RTT-type relations [14], (e) the fact that D-functions can be written in terms of the little q-Jacobi polynomials [15] and (f) the generating function [16]. We will show that many of these have counterparts in the representation theory of $S L_{h}(2)$. The only exception is the generating function, which is
\dagger Present address: Arnold Sommerfeld Institute for Mathematical Physics, TU Clausthal, Leibnizstr. 10, D-38678 Clausthal-Zellerfeld, Germany. E-mail: ptaizawa@pt.tu-clausthal.de.
\ddagger For the D-functions for $S L_{q}(2)$, see [12].
not presented in this paper. Of course, this does not mean that the generating function for the D-functions of $S L_{h}(2)$ does not exist.

The plan of this paper is as follows: we present the definitions of $S L_{h}(2)$ and its dual quantum algebra $\mathcal{U}_{h}(s l(2))$ in section 2 . In section 3 , before deriving the explicit formulae for the representation functions, we discuss general features of them which are valid for any kind of deformation of $S L(2)$ under the assumption that the representation theory of the dual quantum algebra has a one-to-one correspondence with the undeformed $s l(2)$. Then we give the recurrence relations for $S L_{h}(2) D$-functions. Section 4 briefly reviews the D-functions for Lie group $S L(2)$ (and $G L(2)$). We emphasize that the D-functions for $G L(2)$ form, in a certain boson realization, irreducible tensor operators of the Lie algebra $g l(2) \oplus g l(2)$. In section 5 , a tensor operator technique is used to obtain the boson realization of the generators of the Jordanian quantum group $G L_{h}(2)$; it is then generalized to obtain the D-functions for $G L_{h}(2)$. We shall apply the same technique to show that the D-functions for $S L_{h}(2)$ can be expressed in terms of Jacobi polynomials. This method will be applied to obtain a boson realization for two-parametric extension of the Jordanian deformation of $G L(2)$ in section 6 . Section 7 contains concluding remarks.

2. $S L_{h}(2)$ and its dual

The Jordanian quantum group $G L_{h}(2)$ is generated by four elements x, y, u and v subject to the relations [3-5]

$$
\begin{align*}
& {[v, x]=h v^{2} \quad[u, x]=h\left(D-x^{2}\right)} \\
& {[v, y]=h v^{2} \quad[u, y]=h\left(D-y^{2}\right)} \tag{2.1}\\
& {[x, y]=h(x v-y v) \quad[v, u]=h(x v+v y)}
\end{align*}
$$

where $D=x y-u v-h x v$ is the quantum determinant generating the centre of $G L_{h}(2)$. This is a Hopf algebra and Hopf algebra mappings have a similar form as $G L_{q}(2)$. However, explicit form of the mappings is not necessary in the following discussion. By setting $D=1$, we obtain $S L_{h}$ (2) from $G L_{h}(2)$.

The quantum algebra dual to $G L_{h}(2)$ is denoted by $\mathcal{U}_{h}(g l(2))$, and defined by the same commutation relations as the Lie algebra $g l(2)$

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm 2 J_{ \pm} \quad\left[J_{+}, J_{-}\right]=J_{0} \quad[Z, \bullet]=0 \tag{2.2}
\end{equation*}
$$

However, their Hopf algebra mappings are modified via twisting [17] by the invertible element $\mathcal{F} \in \mathcal{U}_{h}(g l(2))^{\otimes 2}$ [18]

$$
\begin{equation*}
\mathcal{F}=\exp \left(-\frac{1}{2} J_{0} \otimes \sigma\right) \quad \sigma=-\ln \left(1-2 h J_{+}\right) \tag{2.3}
\end{equation*}
$$

The coproduct Δ, co-unit ϵ and antipode S for $\mathcal{U}_{h}(g l(2))$ are obtained from those for $g l(2)$ by

$$
\begin{equation*}
\Delta=\mathcal{F} \Delta_{0} \mathcal{F}^{-1} \quad \epsilon=\epsilon_{0} \quad S=\mu S_{0} \mu^{-1} \tag{2.4}
\end{equation*}
$$

where the mappings with subscript 0 stand for the Hopf algebra mappings for $g l(2)$. The elements μ and μ^{-1} are defined, using the product m for $g l(2)$, by

$$
\begin{equation*}
\mu=m\left(\mathrm{id} \otimes S_{0}\right)(\mathcal{F}) \quad \mu^{-1}=m\left(S_{0} \otimes \mathrm{id}\right)\left(\mathcal{F}^{-1}\right) \tag{2.5}
\end{equation*}
$$

The twist element \mathcal{F} is not dependent on the central element Z so that the Hopf algebra mappings for Z remain undeformed. Therefore, the Jordanian quantum algebra obtained by the twist element (2.3) has the decomposition $\mathcal{U}_{h}(g l(2))=\mathcal{U}_{h}(s l(2)) \oplus u(1)$. The Jordanian quantum algebra $\mathcal{U}_{h}(g l(2))$ is a triangular Hopf algebra whose universal R-matrix is given by $\mathcal{R}=\mathcal{F}_{12} \mathcal{F}^{-1}$.

It is obvious, from the commutation relation (2.2), that $\mathcal{U}_{h}(g l(2))$ and $g l(2)$ have the same finite-dimensional highest-weight irreducible representations. Furthermore, we can easily see that tensor product of two irreducible representations (irreps) is completely reducible and decomposed into irreps in the same way as $g l(2)$, since the Clebsch-Gordan coefficients (CGCs) for $\mathcal{U}_{h}(g l(2))$ are the product of the ones for $g l(2)$ and the matrix elements of the twist element \mathcal{F}. For the $\mathcal{U}_{h}(s l(2))$ sector, this is carried out in [19]. The CGCs for $\mathcal{U}_{h}(s l(2))$ in another basis are discussed in [20].

Let Δ, ϵ be the coproduct and co-unit for $G L_{h}(2)$, respectively. We use the same notation for the Hopf algebra mappings of both $G L_{h}(2)$ and $\mathcal{U}_{h}(g l(2))$; however, this should not cause serious confusion. A vector space (representation space) V is called the right $G L_{h}(2)$ comodule, if there exists a map $\rho: V \rightarrow V \otimes G L_{h}(2)$ such that the following relations are satisfied:

$$
\begin{equation*}
(\rho \otimes \mathrm{id}) \circ \rho=\left(\mathrm{id}_{V} \otimes \Delta\right) \circ \rho \quad\left(\mathrm{id}_{V} \otimes \epsilon\right) \circ \rho=\mathrm{id}_{V} \tag{2.6}
\end{equation*}
$$

where id_{V} stands for the identity map in V. The left comodule is defined in a similar manner. Using the bases $\left\{e_{i} \| i=1,2, \ldots, n\right\}$ of V, the map ρ is written as

$$
\begin{equation*}
\rho\left(e_{i}\right)=\sum_{j} e_{j} \otimes \mathcal{D}_{j i} . \tag{2.7}
\end{equation*}
$$

It follows that the relation (2.6) are rewritten as

$$
\begin{equation*}
\Delta\left(\mathcal{D}_{i j}\right)=\sum_{k} \mathcal{D}_{i k} \otimes \mathcal{D}_{k j} \quad \epsilon\left(\mathcal{D}_{i j}\right)=\delta_{i j} \tag{2.8}
\end{equation*}
$$

We call $\mathcal{D}_{i j} \in G L_{h}(2)$ satisfying (2.7) and (2.8) the D-function for $G L_{h}(2)$.

3. Properties of \boldsymbol{D}-functions

3.1. Wigner's product law and RTT-type relations

Before deriving the explicit formulae for $S L_{h}(2) D$-functions, we discuss some important properties of D-functions such as Wigner's product law, recurrence relations, RTT-type relations and so on, using the definition of the universal T-matrix [21, 22]. The explicit expression of the universal T-matrix is not necessary. The universal T-matrix for the standard deformation of $G L(2)$ is given in [22], while it is not known for the Jordanian deformation of $G L(2)$.

The discussion in this section is quite general. We present it so as to be applicable to any kind of deformation of $S L(2)$ (standard, Jordanian, two-parametric extension, anything else (if any)). Then, in section 3.2 we give the results explicitly for the Jordanian deformation of $S L(2)$. It will also be seen that the discussion is easily extended to other groups.

Let \mathcal{G} and \boldsymbol{g} be deformation of Lie group $S L(2)$ and Lie algebra $s l(2)$, respectively. The duality between \mathcal{G} and \boldsymbol{g} are expressed, by choosing suitable bases, in terms of the universal T-matrix [22]. Let x^{α} and X_{α} be elements of a basis of \mathcal{G} and \boldsymbol{g}, respectively. They are chosen as follows: the product is given by

$$
\begin{equation*}
x^{\alpha} x^{\beta}=\sum_{\gamma} h_{\gamma}^{\alpha, \beta} x^{\gamma} \quad X_{\alpha} X_{\beta}=\sum_{\gamma} f_{\alpha, \beta}^{\gamma} X_{\gamma} \tag{3.1}
\end{equation*}
$$

and the coproduct is given by

$$
\begin{equation*}
\Delta\left(x^{\alpha}\right)=\sum_{\beta, \gamma} f_{\beta, \gamma}^{\alpha} x^{\beta} \otimes x^{\gamma} \quad \Delta\left(X_{\alpha}\right)=\sum_{\beta, \gamma} h_{\alpha}^{\beta, \gamma} X_{\beta} \otimes X_{\gamma} \tag{3.2}
\end{equation*}
$$

Then the universal T-matrix \mathcal{T} is defined by

$$
\begin{equation*}
\mathcal{T}=\sum_{\alpha} x^{\alpha} \otimes X_{\alpha} \tag{3.3}
\end{equation*}
$$

We assume that the deformed algebra \boldsymbol{g} has the same finite-dimensional highest-weight irreps as $s l(2)$: that is (1) each irrep is classified by the spin j and a irrep basis $|j m\rangle$ is specified by j and the magnetic quantum number m, and (2) tensor product of irreps j_{1} and j_{2} is completely reducible:

$$
j_{1} \otimes j_{2}=j_{1}+j_{2} \oplus j_{1}+j_{2}-1 \oplus \cdots \oplus\left|j_{1}-j_{2}\right|
$$

We further assume that vectors $|j m\rangle$ are complete and orthonormal. Then the D-functions for \mathcal{G} are obtained by

$$
\begin{equation*}
\mathcal{D}_{m^{\prime}, m}^{j}=\left\langle j m^{\prime}\right| \mathcal{T}|j m\rangle=\sum_{\alpha} x^{\alpha}\left\langle j m^{\prime}\right| X_{\alpha}|j m\rangle . \tag{3.4}
\end{equation*}
$$

For the standard two-parametric deformation of $G L(2)$, the RHS of (3.4) was computed and it was shown that (3.4) coincided with the D-functions obtained by another method [23]. In our case, we show that the D-functions (3.4) satisfy (2.8) by making use of relations (3.1) and (3.2). The coproduct of $\mathcal{D}_{m^{\prime}, m}^{j}$ is computed as

$$
\begin{aligned}
\Delta\left(\mathcal{D}_{m^{\prime}, m}^{j}\right) & =\sum_{\alpha} \Delta\left(x^{\alpha}\right)\left\langle j m^{\prime}\right| X_{\alpha}|j m\rangle=\sum_{\beta, \gamma} x^{\beta} \otimes x^{\gamma}\left\langle j m^{\prime}\right| X_{\beta} X_{\gamma}|j m\rangle \\
& =\sum_{\beta, \gamma, k} x^{\beta} \otimes x^{\gamma}\left\langle j m^{\prime}\right| X_{\beta}|j k\rangle\langle j k| X_{\gamma}|j m\rangle=\sum_{k} \mathcal{D}_{m^{\prime}, k}^{j} \otimes \mathcal{D}_{k, m}^{j} .
\end{aligned}
$$

To compute the co-unit for $\mathcal{D}_{m^{\prime}, m}^{j}$, we use the identity obtained from the definition of co-unit:

$$
\begin{equation*}
\sum_{\beta, \gamma} f_{\beta, \gamma}^{\alpha} \in\left(x^{\beta}\right) x^{\gamma}=x^{\alpha} . \tag{3.5}
\end{equation*}
$$

Using this relation, the universal T-matrix is rewritten as

$$
\begin{aligned}
\mathcal{T} & =\sum_{\alpha} x^{\alpha} \otimes X_{\alpha}=\sum f_{\beta, \gamma}^{\alpha} \epsilon\left(x^{\beta}\right) x^{\gamma} \otimes X_{\alpha}=\sum \epsilon\left(x^{\beta}\right) x^{\gamma} \otimes X_{\beta} X_{\gamma} \\
& =\left(\sum_{\beta} \epsilon\left(x^{\beta}\right) \otimes X_{\beta}\right) \mathcal{T} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left(\sum_{\beta} \epsilon\left(x^{\beta}\right) \otimes X_{\beta}\right)=(\epsilon \otimes \mathrm{id})(\mathcal{T})=1 . \tag{3.6}
\end{equation*}
$$

Therefore, the co-unit for D-functions is

$$
\epsilon\left(\mathcal{D}_{m^{\prime}, m}^{j}\right)=\left\langle j m^{\prime}\right|(\epsilon \otimes \mathrm{id})(\mathcal{T})|j m\rangle=\left\langle j m^{\prime} \mid j m\right\rangle=\delta_{m^{\prime}, m} .
$$

We first show that the D-functions (3.4) satisfy analogous relations to Wigner's product law. Let us denote the CGC for \boldsymbol{g} by $\Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}$, i.e.

$$
\begin{equation*}
\left|\left(j_{1} j_{2}\right) j m\right\rangle=\sum_{m_{1}, m_{2}} \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle . \tag{3.7}
\end{equation*}
$$

We write the inverse of the above relation as follows:

$$
\begin{equation*}
\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle=\sum_{j, m} \bigcup_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}\left|\left(j_{1} j_{2}\right) j m\right\rangle . \tag{3.8}
\end{equation*}
$$

Then the following theorem is an analogue of Wigner's product law.
Theorem 3.1. The D-functions for \mathcal{G} satisfy the relation

$$
\begin{equation*}
\delta_{j, j^{\prime}} \mathcal{D}_{m^{\prime}, m}^{j}=\sum_{k_{1}, k_{2}, m_{1}, m_{2}} \mho_{k_{1}, k_{2}, m^{\prime}}^{j_{1}, j_{2}, j^{\prime}} \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} \mathcal{D}_{k_{1}, m_{1}}^{j_{1}} \mathcal{D}_{k_{2}, m_{2}}^{j_{2}} . \tag{3.9}
\end{equation*}
$$

Proof. Because of (3.1) and (3.2), one can show that
$(\mathrm{id} \otimes \Delta)(\mathcal{T})=\sum_{\alpha, \beta} x^{\alpha} x^{\beta} \otimes X_{\alpha} \otimes X_{\beta} \quad(\Delta \otimes \mathrm{id})(\mathcal{T})=\sum_{\alpha, \beta} x^{\alpha} \otimes x^{\beta} \otimes X_{\alpha} X_{\beta}$.
It follows that
$(\mathrm{id} \otimes \Delta)(\mathcal{T})\left|\left(j_{1} j_{2}\right) j m\right\rangle=\sum_{\alpha, \beta, m_{1}, m_{2}} \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} x^{\alpha} x^{\beta} \otimes X_{\alpha}\left|j_{1} m_{1}\right\rangle \otimes X_{\beta}\left|j_{2} m_{2}\right\rangle$.
The LHS of (3.11) is rewritten as

$$
\sum_{m^{\prime}} \mathcal{D}_{m^{\prime}, m}^{j} \otimes\left|\left(j_{1} j_{2}\right) j m^{\prime}\right\rangle=\sum_{m^{\prime}, k_{1}, k_{2}} \Omega_{k_{1},,_{2}, m^{\prime}}^{j_{1}, j_{2}, j} \mathcal{D}_{m^{\prime}, m}^{j} \otimes\left|j_{1} k_{1}\right\rangle \otimes\left|j_{2} k_{2}\right\rangle .
$$

The RHS of (3.11) is rewritten as

$$
\begin{gathered}
\sum \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}\left\langle j_{1} k_{1}\right| X_{\alpha}\left|j_{1} m_{1}\right\rangle\left\langle j_{2} k_{2}\right| X_{\beta}\left|j_{2} m_{2}\right\rangle x^{\alpha} x^{\beta} \otimes\left|j_{1} k_{1}\right\rangle \otimes\left|j_{2} k_{2}\right\rangle \\
=\sum \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} \mathcal{D}_{k_{1}, m_{1}}^{j_{1}} \mathcal{D}_{k_{2}, m_{2}}^{j_{2}} \otimes\left|j_{1} k_{1}\right\rangle \otimes\left|j_{2} k_{2}\right\rangle .
\end{gathered}
$$

Thus we obtain

$$
\begin{equation*}
\sum_{m^{\prime}} \Omega_{k_{1}, k_{2}, m^{\prime}}^{j_{1}, j_{2}, j} \mathcal{D}_{m^{\prime}, m}^{j}=\sum_{m_{1}, m_{2}} \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} \mathcal{D}_{k_{1}, m_{1}}^{j_{1}} \mathcal{D}_{k_{2}, m_{2}}^{j_{2}} \tag{3.12}
\end{equation*}
$$

Using the orthogonality of $\Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}$ and $\mho_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}$, the theorem is proved.

Corollary 3.2. The D-functions also satisfy the following relations:

$$
\begin{align*}
& \sum_{m^{\prime}} \Omega_{k_{1}, k_{2}, m^{\prime}}^{j_{1}, j_{2}, j} \mathcal{m}_{m^{\prime}, m}^{j}=\sum_{m_{1}, m_{2}} \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} \mathcal{D}_{k_{1}, m_{1}}^{j_{1}} \mathcal{D}_{k_{2}, m_{2}}^{j_{2}} \tag{3.13}\\
& \sum_{m} \mho_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} \mathcal{D}_{m^{\prime}, m}^{j}=\sum_{k_{1}, k_{2}} \mho_{k_{1}, k_{2}, m^{\prime}}^{j_{1}, j_{2}, j} \mathcal{D}_{k_{1}, m_{1}}^{j_{1}} \mathcal{D}_{k_{2}, m_{2}}^{j_{2}}, \tag{3.14}\\
& \mathcal{D}_{k_{1}, m_{1}}^{j_{1}} \mathcal{D}_{k_{2}, m_{2}}^{j_{2}}=\sum_{j, m, m^{\prime}} \mho_{m_{1}, m_{2}, m_{2}, j_{2}, j}^{j_{1}, \Omega_{k_{1}, k_{2}, m^{\prime}}^{j_{1}, \mathcal{D}_{2}} \mathcal{D}_{m^{\prime}, m}^{j}} . \tag{3.15}
\end{align*}
$$

Proof. Equation (3.13) has already been obtained in the proof of theorem 3.1, see (3.12). The others can be obtained from (3.13) by the orthogonality of Ω and \mho.

For $\mathcal{G}=S L_{q}(2)$ and $\boldsymbol{g}=\mathcal{U}_{q}(s l(2))$, the CGCs Ω, \mho are given by the q-analogue of the CGC of $\operatorname{sl}(2): \Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}=\bigcup_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}={ }_{q} C_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j_{2}}$. From (3.9) and (3.13)-(3.15), the recurrence relations and the orthogonality of $S L_{q}(2) D$-functions are obtained [6, 13, 14].

Next we show that the D-functions (3.4) satisfy the RTT-type relation.
Theorem 3.3. The D-functions for \mathcal{G} satisfy

$$
\begin{equation*}
\sum_{s_{1}, s_{2}}\left(R^{j_{1}, j_{2}}\right)_{m_{1}, m_{2}}^{s_{1}, s_{2}} \mathcal{D}_{s_{1}, k_{1}}^{j_{1}} \mathcal{D}_{s_{2}, k_{2}}^{j_{2}}=\sum_{s_{1}, s_{2}} \mathcal{D}_{m_{2}, s_{2}}^{j_{2}} \mathcal{D}_{m_{1}, s_{1}}^{j_{1}}\left(R^{j_{1}, j_{2}}\right)_{s_{1}, s_{2}}^{k_{1}, k_{2}} \tag{3.16}
\end{equation*}
$$

where $\left(R^{j_{1}, j_{2}}\right)_{m_{1}, m_{2}}^{s_{1}, s_{2}}$ are the matrix elements of the universal R-matrix for \boldsymbol{g} :

$$
\left(R^{j_{1}, j_{2}}\right)_{m_{1}, m_{2}}^{s_{1}, s_{2}}=\left\langle j_{1} m_{1}\right| \otimes\left\langle j_{2} m_{2}\right| \mathcal{R}\left|j_{1} s_{1}\right\rangle \otimes\left|j_{2} s_{2}\right\rangle
$$

Remark. For $j_{1}=j_{2}=\frac{1}{2}$, the matrix elements for \mathcal{R} are evaluated in the fundamental representation of \boldsymbol{g}. Therefore, (3.16) is reduced to the defining relation of \mathcal{G} in FRT formalism [2]. This implies that $\mathcal{D}_{m^{\prime}, m}^{\frac{1}{2}}$ are generators of \mathcal{G}.

Proof. The relation (3.16) can be proved by evaluating matrix elements of the RTT-type relation for the universal T-matrix [24]. We define

$$
\mathcal{T}_{1}=\sum x^{\alpha} \otimes X_{\alpha} \otimes 1 \quad \mathcal{T}_{2}=\sum x^{\alpha} \otimes 1 \otimes X_{\alpha}
$$

Then

$$
\begin{aligned}
& \mathcal{T}_{1} \mathcal{T}_{2}=\sum_{\alpha, \beta} x^{\alpha} x^{\beta} \otimes X_{\alpha} \otimes X_{\beta}=\sum_{\alpha} x^{\alpha} \otimes \Delta\left(X_{\alpha}\right) \\
& \mathcal{T}_{2} \mathcal{T}_{1}=\sum_{\alpha, \beta} x^{\beta} x^{\alpha} \otimes X_{\alpha} \otimes X_{\beta}=\sum_{\alpha} x^{\alpha} \otimes \Delta^{\prime}\left(X_{\alpha}\right)
\end{aligned}
$$

where Δ^{\prime} stands for the opposite coproduct. It follows that

$$
\mathcal{T}_{2} \mathcal{T}_{1}=\sum_{\alpha} x^{\alpha} \otimes \mathcal{R} \Delta\left(X_{\alpha}\right) \mathcal{R}^{-1}
$$

Thus we obtain

$$
(1 \otimes \mathcal{R}) \mathcal{T}_{1} \mathcal{T}_{2}=\mathcal{T}_{2} \mathcal{T}_{1}(1 \otimes \mathcal{R})
$$

Evaluating the matrix elements on $1 \otimes\left|j_{1} k_{1}\right\rangle \otimes\left|j_{2} k_{2}\right\rangle$, the theorem is proved.
For $\mathcal{G}=S L_{q}(2)$, the relaiton (3.16) was proved by Nomura [14]. However, theorem 3.3 shows that (3.16) holds for any kind of deformation of $S L(2)$. In [14], the D-functions for $S L_{q}(2)$ are interpreted as the wavefunctions of quantum symmetric tops in noncommutative space.

3.2. Recurrence relations and orthogonality-like relations

In this section, the recurrence relations and the orthogonality-like relations of the $S L_{h}(2) D$ functions are derived as a consequence of the theorems in the previous section. It is known that the CGCs for $\mathcal{U}_{h}(s l(2))$ are given in terms of the CGCs for $s l(2)$ and the matrix elements of the twist element \mathcal{F}

$$
\begin{equation*}
\Omega_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}=\sum_{s_{1}, s_{2}} C_{s_{1}, s_{2}, m}^{j_{1}, j_{2}, j}\left(F^{j_{1}, j_{2}}\right)_{m_{1}, m_{2}}^{s_{1}, s_{2}} \tag{3.17}
\end{equation*}
$$

where $C_{s_{1}, s_{2}, m}^{j_{1}, j_{2}}$ is the CGC for $s l(2)$ and $\left(F^{j_{1}, j_{2}}\right)_{m_{1}, m_{2}}^{s_{1}, s_{2}}$ is given by

$$
\left(F^{j_{1}, j_{2}}\right)_{m_{1}, m_{2}}^{s_{1}, s_{2}}=\left\langle j_{1}, m_{1}\right| \otimes\left\langle j_{2}, m_{2}\right| \mathcal{F}\left|j_{1}, s_{1}\right\rangle \otimes\left|j_{2}, s_{2}\right\rangle
$$

The explicit formula for $\left(F^{j_{1}, j_{2}}\right)_{m_{1}, m_{2}}^{s_{1}, s_{2}}$ and the next relation are found in [11]:

$$
\begin{equation*}
\left(F^{j_{1}, j_{2}}\right)_{-m_{1},-m_{2}}^{-s_{1},-s_{2}}=\left(\left(F^{-1}\right)^{j_{1}, j_{2}}\right)_{s_{1}, s_{2}}^{m_{1}, m_{2}} . \tag{3.18}
\end{equation*}
$$

The CGCs for $\mathcal{U}_{h}(s l(2))$ satisfy the orthogonality relations [20] because of

$$
\begin{equation*}
\mho_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}=(-1)^{j_{1}+j_{2}-j} \Omega_{-m_{1},-m_{2},-m}^{j_{1}, j_{2}, j}=\sum_{s_{1}, s_{2}} C_{s_{1}, s_{2}, m}^{j_{1}, j_{2}, j}\left(\left(F^{-1}\right)^{j_{1}, j_{2}}\right)_{s_{1}, s_{2}}^{m_{1}, m_{2}} . \tag{3.19}
\end{equation*}
$$

The relation (3.18) and the well known property of the $s l(2) \mathrm{CGC}$ are used in the last equality.
Note that we have known the following fact because of the remark to theorem 3.3.
Proposition 3.4. $\mathcal{D}_{m^{\prime}, m}^{\frac{1}{2}}$ are the generators of $S L_{h}(2)$

$$
\left(\begin{array}{cc}
\mathcal{D}_{\frac{1}{2}, \frac{1}{2}}^{\frac{1}{2}} & \mathcal{D}_{\frac{1}{2},-\frac{1}{2}}^{\frac{1}{2}} \tag{3.20}\\
\mathcal{D}_{-\frac{1}{2}, \frac{1}{2}}^{\frac{1}{2}} & \mathcal{D}_{-\frac{1}{2},-\frac{1}{2}}^{\frac{1}{2}}
\end{array}\right)=\left(\begin{array}{cc}
x & u \\
v & y
\end{array}\right) .
$$

Let us consider the case that j_{1} is arbitrary and $j_{2}=\frac{1}{2}$ in order to derive the recurrence relations for $S L_{h}(2) D$-functions. In this case, the F-coefficients have a simple form:

$$
\begin{aligned}
& \left(F^{j_{1}, \frac{1}{2}}\right)_{k_{1}, k_{2}}^{m_{1}, \frac{1}{2}}=\delta_{k_{1}, m_{1}} \delta_{k_{2}, \frac{1}{2}} \\
& \left(F^{j_{1}, \frac{1}{2}}\right)_{k_{1}, k_{2}}^{m_{1},-\frac{1}{2}}=\delta_{k_{1}, m_{1}}\left(\delta_{k_{2},-\frac{1}{2}}-2 m_{1} h \delta_{k_{2}, \frac{1}{2}}\right) \\
& \left(\left(F^{-1}\right)^{j_{1}, \frac{1}{2}}\right)_{m_{1}, \frac{1}{2}}^{n_{1}, n_{2}}=\delta_{m_{1}, n_{1}}\left(\delta_{n_{2}, \frac{1}{2}}+2 m_{1} h \delta_{n_{2},-\frac{1}{2}}\right) \\
& \left(\left(F^{-1}\right)^{j_{1}, \frac{1}{2}}\right)_{m_{1},-\frac{1}{2}}^{n_{1}, n_{2}}=\delta_{m_{1}, n_{1}} \delta_{n_{2},-\frac{1}{2}} .
\end{aligned}
$$

One can use Wigner's product law, expressed in the form of (3.13) and (3.14), to derive the recurrence relations for $\mathcal{D}_{m^{\prime}, m}^{j}$ which are reduced to the known recurrence relations of the $S L(2) D$-functions in the limit of $h=0$.

Proposition 3.5. The $S L_{h}(2) D$-functions satisfy the following recurrence relations:
(i) $\sqrt{j+k} \mathcal{D}_{k, m}^{j}-(2 k-1) h \sqrt{j-k+1} \mathcal{D}_{k-1, m}^{j}$

$$
=\sqrt{j+m} \mathcal{D}_{k-\frac{1}{2}, m-\frac{1}{2}}^{j-\frac{1}{2}} x+\sqrt{j-m} \mathcal{D}_{k-\frac{1}{2}, m+\frac{1}{2}}^{j-\frac{1}{2}}(u-(2 m+1) h x)
$$

(ii) $\sqrt{j-k} \mathcal{D}_{k, m}^{j}=\sqrt{j+m} \mathcal{D}_{k+\frac{1}{2}, m-\frac{1}{2}}^{j-\frac{1}{2}} v+\sqrt{j-m} \mathcal{D}_{k+\frac{1}{2}, m+\frac{1}{2}}^{j-\frac{1}{2}}(y-(2 m+1) h v)$
(iii) $\sqrt{j+n} \mathcal{D}_{m, n}^{j}=\sqrt{j+m} \mathcal{D}_{m-\frac{1}{2}, n-\frac{1}{2}}^{j-\frac{1}{2}}(x+(2 m-1) h v)+\sqrt{j-m} \mathcal{D}_{m+\frac{1}{2}, n-\frac{1}{2}}^{j-\frac{1}{2}} v$
(iv) $\sqrt{j-n} \mathcal{D}_{m, n}^{j}+\sqrt{j+n}(2 n+1) h \mathcal{D}_{m, n+1}^{j}$

$$
=\sqrt{j+m} \mathcal{D}_{m-\frac{1}{2}, n+\frac{1}{2}}^{j-\frac{1}{2}}(u+(2 m-1) h y)+\sqrt{j-m} \mathcal{D}_{m+\frac{1}{2}, n+\frac{1}{2}}^{j-\frac{1}{2}} y
$$

(v) $\sqrt{j-k+1} \mathcal{D}_{k, m}^{j}+(2 k-1) h \sqrt{j+k} \mathcal{D}_{k-1, m}^{j}$

$$
=\sqrt{j-m+1} \mathcal{D}_{k-\frac{1}{2}, m-\frac{1}{2}}^{j+\frac{1}{2}} x-\sqrt{j+m+1} \mathcal{D}_{k-\frac{1}{2}, m+\frac{1}{2}}^{j+\frac{1}{2}}(u-(2 m+1) h x)
$$

(vi) $\sqrt{j+k+1} \mathcal{D}_{k, m}^{j}=-\sqrt{j-m+1} \mathcal{D}_{k+\frac{1}{2}, m-\frac{1}{2}}^{j+\frac{1}{2}} v$

$$
+\sqrt{j+m+1} \mathcal{D}_{k+\frac{1}{2}, m+\frac{1}{2}}^{j+\frac{1}{2}}(y-(2 m+1) h v)
$$

(vii) $\quad \sqrt{j-n+1} \mathcal{D}_{m, n}^{j}=\sqrt{j-m+1} \mathcal{D}_{m-\frac{1}{2}, n-\frac{1}{2}}^{j+\frac{1}{2}}(x+(2 m-1) h v)$

$$
-\sqrt{j+m+1} \mathcal{D}_{m+\frac{1}{2}, n-\frac{1}{2}}^{j+\frac{1}{2}} v
$$

(viii) $\sqrt{j+n+1} \mathcal{D}_{m, n}^{j}-\sqrt{j-n}(2 n+1) h \mathcal{D}_{m, n+1}^{j}$

$$
=-\sqrt{j-m+1} \mathcal{D}_{m-\frac{1}{2}, n+\frac{1}{2}}^{j+\frac{1}{2}}(u+(2 m-1) h y)+\sqrt{j+m+1} \mathcal{D}_{m+\frac{1}{2}, n+\frac{1}{2}}^{j+\frac{1}{2}} y .
$$

Proof. Put $j_{2}=\frac{1}{2}, j=j_{1}+\frac{1}{2}$ in relation (3.13), then

$$
\begin{aligned}
\sqrt{j_{1}+k_{1}+1} & \mathcal{D}_{k_{1}+\frac{1}{2}, m}^{j_{1}+\frac{1}{2}}+\sqrt{j_{1}-k_{1}+1}\left(\delta_{k_{2},-\frac{1}{2}}-2 k_{1} h \delta_{k_{2}, \frac{1}{2}}\right) \mathcal{D}_{k_{1}-\frac{1}{2}, m}^{j_{1}+\frac{1}{2}} \\
= & \sqrt{j_{1}+m+\frac{1}{2}} \mathcal{D}_{k_{1}, m-\frac{1}{2}}^{j_{1}} \mathcal{D}_{k_{2}, \frac{1}{2}}^{\frac{1}{2}} \\
& +\sqrt{j_{1}-m+\frac{1}{2}} \mathcal{D}_{k_{1}, m+\frac{1}{2}}^{j_{1}}\left(\mathcal{D}_{k_{2},-\frac{1}{2}}^{\frac{1}{2}}-(2 m+1) h \mathcal{D}_{k_{2}, \frac{1}{2}}^{\frac{1}{2}}\right) .
\end{aligned}
$$

Replacing $j_{1}+\frac{1}{2}$ and $k_{1}+\frac{1}{2}$ with j and k, respectively, we obtain

$$
\begin{aligned}
& \sqrt{j+k} \delta_{k_{2}, \frac{1}{2}} \mathcal{D}_{k, m}^{j}+\sqrt{j-k+1}\left(\delta_{k_{2},-\frac{1}{2}}-(2 k-1) h \delta_{k_{2}, \frac{1}{2}}\right) \mathcal{D}_{k-1, m}^{j} \\
& \quad=\sqrt{j+m} \mathcal{D}_{k-\frac{1}{2}, m-\frac{1}{2}}^{j-\frac{1}{2}} \mathcal{D}_{k_{2}, \frac{1}{2}}^{\frac{1}{2}}+\sqrt{j-m} \mathcal{D}_{k-\frac{1}{2}, m+\frac{1}{2}}^{j-\frac{1}{2}}\left(\mathcal{D}_{k_{2},-\frac{1}{2}}^{\frac{1}{2}}-(2 m+1) h \mathcal{D}_{k_{2}, \frac{1}{2}}^{\frac{1}{2}}\right) .
\end{aligned}
$$

The recurrence relations (i) and (ii) are obtained by putting $k_{2}=\frac{1}{2}$ and $k_{2}=-\frac{1}{2}$, respectively.
We repeat a similar computation for (3.14). We put $j_{2}=\frac{1}{2}, j=j_{1}+\frac{1}{2}$ in (3.14), then rearrange some variables. We obtain

$$
\begin{aligned}
\sqrt{j+n}\left\{\delta_{n_{2}, \frac{1}{2}}\right. & \left.+(2 n-1) h \delta_{n_{2},-\frac{1}{2}}\right\} \mathcal{D}_{m, n}^{j}+\sqrt{j-n+1} \delta_{n_{2},-\frac{1}{2}} \mathcal{D}_{m, n-1}^{j} \\
= & \sqrt{j+m} \mathcal{D}_{m-\frac{1}{2}, n-\frac{1}{2}}^{j-\frac{1}{2}}\left\{\mathcal{D}_{\frac{1}{2}, n_{2}}^{\frac{1}{2}}+(2 m-1) h \mathcal{D}_{-\frac{1}{2}, n_{2}}^{\frac{1}{2}}\right\} \\
& +\sqrt{j-m} \mathcal{D}_{m+\frac{1}{2}, n-\frac{1}{2}}^{j-\frac{1}{2}} \mathcal{D}_{-\frac{1}{2}, n_{2}}^{\frac{1}{2}} .
\end{aligned}
$$

The recurrence relations (iii) and (iv) correspond to the cases of $n_{2}=\frac{1}{2}$ and $n_{2}=-\frac{1}{2}$, respectively.

The recurrence relations (v)-(viii) correspond to $j_{2}=\frac{1}{2}, j=j_{1}-\frac{1}{2}$. In this case, after rearrangement of variables, (3.13) yields

$$
\begin{aligned}
\sqrt{j-k+1} & \delta_{k_{2}, \frac{1}{2}} \mathcal{D}_{k, m}^{j}-\sqrt{j+k}\left(\delta_{k_{2},-\frac{1}{2}}-(2 k-1) h \delta_{k_{2}, \frac{1}{2}}\right) \mathcal{D}_{k-1, m}^{j} \\
= & \sqrt{j-m+1} \mathcal{D}_{k-\frac{1}{2}, m-\frac{1}{2}}^{j+\frac{1}{2}} \mathcal{D}_{k_{2}, \frac{1}{2}}^{\frac{1}{2}}-\sqrt{j+m+1} \mathcal{D}_{k-\frac{1}{2}, m+\frac{1}{2}}^{j+\frac{1}{2}} \\
& \times\left(\mathcal{D}_{k_{2},-\frac{1}{2}}^{\frac{1}{2}}-(2 m+1) h \mathcal{D}_{k_{2}, \frac{1}{2}}^{\frac{1}{2}} .\right.
\end{aligned}
$$

Putting $k_{2}=\frac{1}{2}$ and $-\frac{1}{2}$, we obtain the relations (v) and (vi), respectively. The relation (3.14) yields

$$
\begin{aligned}
\sqrt{j-n+1} & \left(\delta_{n_{2}, \frac{1}{2}}+(2 n-1) h \delta_{n_{2},-\frac{1}{2}}\right) \mathcal{D}_{m, n}^{j}-\sqrt{j+n} \delta_{n_{2},-\frac{1}{2}} \mathcal{D}_{m, n-1}^{j} \\
= & \sqrt{j-m+1} \mathcal{D}_{m-\frac{1}{2}, n-\frac{1}{2}}^{j+\frac{1}{2}}\left(\mathcal{D}_{\frac{1}{2}, n_{2}}^{\frac{1}{2}}+(2 m-1) h \mathcal{D}_{-\frac{1}{2}, n_{2}}^{\frac{1}{2}}\right) \\
& -\sqrt{j+m+1} \mathcal{D}_{m+\frac{1}{2}, n-\frac{1}{2}}^{j+\frac{1}{2}} \mathcal{D}_{-\frac{1}{2}, n_{2}}^{\frac{1}{2}} .
\end{aligned}
$$

The recurrence relations (vii) and (viii) are obtained as the cases of $n_{2}=\frac{1}{2}$ and $n_{2}=-\frac{1}{2}$, respectively.

It is possible to obtain the explicit form of D-functions for some special cases such as $\mathcal{D}_{m^{\prime}, j}^{j}, \mathcal{D}_{j, m}^{j}$ by solving these recurrence relations. However, it seems to be difficult to derive formulae for $\mathcal{D}_{m^{\prime}, m}^{j}$ for any values of j, m^{\prime} and m. We will solve this problem by using the tensor operator approach in section 5 .

The orthogonality-like relations for $\mathcal{D}_{m^{\prime}, m}^{j}$ can be obtained from (3.13) and (3.14).
Proposition 3.6. The D-functions for $S L_{h}(2) \mathcal{D}_{m^{\prime}, m}^{j}$ satisfy the orthogonality-like relations which are reduced to the orthogonality relations of SL(2) D-functions in the limit of $h=0$:

$$
\begin{align*}
& \sum_{m_{1}, m_{2}}(-1)^{k_{1}-m_{1}}\left(F^{j, j}\right)_{m_{1}, m_{2}}^{m_{1},-m_{1}} \mathcal{D}_{k_{1}, m_{1}}^{j} \mathcal{D}_{k_{2}, m_{2}}^{j}=\left(F^{j, j}\right)_{k_{1}, k_{2}}^{k_{1}-k_{1}} \tag{3.21}\\
& \sum_{k_{1}, k_{2}}(-1)^{m_{1}-k_{1}}\left(\left(F^{-1}\right)^{j, j}\right)_{k_{1},-k_{1}}^{k_{1}, k_{2}} \mathcal{D}_{k_{1}, m_{1}}^{j} \mathcal{D}_{k_{2}, m_{2}}^{j}=\left(\left(F^{-1}\right)^{j, j}\right)_{m_{1},-m_{1}}^{m_{1}, m_{2}} . \tag{3.22}
\end{align*}
$$

Proof. Consider the cases of $j=0, j_{1}=j_{2}$ in (3.13) and (3.14). Writing $j_{1}=j_{2}=j$, they yield

$$
\begin{aligned}
& \sum_{m_{1}, m_{2}} \Omega_{m_{1}, m_{2}, 0}^{j, j, 0} \mathcal{D}_{k_{1}, m_{1}}^{j} \mathcal{D}_{k_{2}, m_{2}}^{j}=\Omega_{k_{1}, k_{2}, 0}^{j, j, 0} \\
& \sum_{k_{1}, k_{2}} \mathcal{S}_{k_{1}, k_{2}, 0}^{j, j, 0} \mathcal{D}_{k_{1}, m_{1}}^{j} \mathcal{D}_{k_{2}, m_{2}}^{j}=\mathcal{S}_{m_{1}, m_{2}, 0}^{j, j, 0}
\end{aligned}
$$

The CGCs are given by
$\Omega_{m_{1}, m_{2}, 0}^{j, j, 0}=\sum_{s} C_{s,-s, 0}^{j, j, 0}\left(F^{j, j}\right)_{m_{1}, m_{2}}^{s,-s} \quad \mho_{m_{1}, m_{2}, 0}^{j, j, 0}=\sum_{s} C_{s,-s, 0}^{j, j, 0}\left(\left(F^{-1}\right)^{j, j}\right)_{s,-s}^{m_{1}, m_{2}}$
and

$$
\left(F^{j, j}\right)_{m_{1}, m_{2}}^{s,-s}=\delta_{s, m_{1}}\left\langle j m_{2}\right| \mathrm{e}^{-s \sigma}|j-s\rangle \quad\left(\left(F^{-1}\right)^{j, j}\right)_{s,-s}^{m_{1}, m_{2}}=\delta_{s, m_{1}}\langle j-s| \mathrm{e}^{m_{1} \sigma}\left|j m_{2}\right\rangle
$$

Then the proof of proposition 3.6 is straightforward.

4. Review of $S L(2)$ representation functions

This section is devoted to a review of the D-functions for Lie group $S L$ (2). In particular, we focus on tensor operator properties and the relationship to Jacobi polynomials. We write the D-functions for $S L(2)$ in terms of boson operators. This makes the tensorial properties of D-functions clear.

Let $a_{i}^{j}, \bar{a}_{i}^{j}, i, j \in\{1,2\}$ be four copies of a boson operator commuting with one another, i.e.

$$
\begin{equation*}
\left[\bar{a}_{i}^{j}, a_{k}^{\ell}\right]=\delta_{i, k} \delta^{j, \ell} \quad\left[a_{i}^{j}, a_{k}^{\ell}\right]=\left[\bar{a}_{i}^{j}, \bar{a}_{k}^{\ell}\right]=0 \tag{4.1}
\end{equation*}
$$

It is known that the Lie algebra $g l(2) \oplus g l(2)$ is realized by these boson operators. The left (lower) generators are defined by

$$
\begin{equation*}
E_{i j}=a_{i}^{1} \bar{a}_{j}^{1}+a_{i}^{2} \bar{a}_{j}^{2} \tag{4.2}
\end{equation*}
$$

and the right (upper) generators are defined by

$$
\begin{equation*}
E^{i j}=a_{1}^{i} \bar{a}_{1}^{j}+a_{2}^{i} \bar{a}_{2}^{j} \tag{4.3}
\end{equation*}
$$

Then both left and right generators satisfy the $g l(2)$ commutation relations and, furthermore, $\left[E_{i j}, E^{k, \ell}\right]=0$. Each $g l(2)$ has decomposition $g l(2)=s l(2) \oplus u(1)$. The left and right $s l(2)$ are generated by

$$
\begin{equation*}
J_{+}=E_{21} \quad J_{-}=E_{12} \quad J_{0}=E_{22}-E_{11} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{+}=E^{12} \quad K_{-}=E^{21} \quad K_{0}=E^{11}-E^{22} \tag{4.5}
\end{equation*}
$$

respectively, and $u(1)$ sectors by $Z_{L}=-E_{11}-E_{22}$ and $Z_{R}=E^{11}+E^{22}$. This choice of generators may be different from the usual one (see, for example, [6 , section 4.4]). However, it is a suitable choice for twisting discussed in the next section. Note also that, in this realization, $Z_{L}=-Z_{R}$. Therefore, strictly speaking, this realization is not the direct sum of two copies of $g l(2)$.

The D-functions for Lie group $G L(2)$ can be given in terms of a_{i}^{j} :
$\mathcal{D}_{m^{\prime}, m}^{(0) j}=\left\{\left(j+m^{\prime}\right)!\left(j-m^{\prime}\right)!(j+m)!(j-m)!\right\}^{1 / 2} \sum_{K, L, M, N} \frac{\left(a_{1}^{1}\right)^{K}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N}}{K!L!M!N!}$
where the sum over K, L, M and N runs non-negative integers provided that

$$
\begin{array}{lc}
K+L=j+m & M+N=j-m \\
K+M=j+m^{\prime} & L+N=j-m^{\prime} \tag{4.7}
\end{array}
$$

We obtain $S L$ (2) D-functions by imposing $a_{1}^{1} a_{2}^{2}-a_{2}^{1} a_{1}^{2}=1$.
It is not difficult to see that D-functions (4.6) form the irreducible tensor operators for both left and right $g l(2)$, i.e.

$$
\begin{align*}
& {\left[J_{ \pm}, \mathcal{D}_{h^{\prime}, m}^{(0) j}\right]=\sqrt{\left(j \pm m^{\prime}\right)\left(j \mp m^{\prime}+1\right)} \mathcal{D}_{m^{\prime} \mp 1, m}^{(0) j}} \\
& {\left[J_{0}, \mathcal{D}_{m^{\prime}, m}^{(0) j}\right]=-2 m^{\prime} \mathcal{D}_{m^{\prime}, m}^{(0) j} \quad\left[Z_{L}, \mathcal{D}_{m^{\prime}, m}^{(0) j}\right]=-2 j \mathcal{D}_{m^{\prime}, m}^{(0) j}} \tag{4.8}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[K_{ \pm}, \mathcal{D}_{m^{\prime}, m}^{(0) j}\right]=\sqrt{(j \mp m)(j \pm m+1)} \mathcal{D}_{m^{\prime}, m \pm 1}^{(0) j}} \\
& {\left[K_{0}, \mathcal{D}_{m^{\prime}, m}^{(0) j}\right]=2 m \mathcal{D}_{m^{\prime}, m}^{(0) j} \quad\left[Z_{R}, \mathcal{D}_{m^{\prime}, m}^{(0), j}\right]=2 j \mathcal{D}_{m^{\prime}, m}^{(0) j} .} \tag{4.9}
\end{align*}
$$

It is well known that the D-functions for $S L(2)$ can be expressed in terms of Jacobi polynomials. The Jacobi polynomials are defined by

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(z)=\sum_{r \geqslant 0} \frac{(-n)_{r}(\alpha+\beta+n+1)_{r}}{(1)_{r}(\alpha+1)_{r}} z^{r} \tag{4.10}
\end{equation*}
$$

where $(\alpha)_{r}$ stands for the sifted factorial

$$
(\alpha)_{r}=\alpha(\alpha+1) \cdots(\alpha+r-1) .
$$

For the case of $S L(2)$, we have the relation $a_{1}^{1} a_{2}^{2}=1+a_{2}^{1} a_{1}^{2}$. Using this, the D-functions are expressed for $m^{\prime}+m \geqslant 0, m^{\prime} \geqslant m$:
$\mathcal{D}_{m^{\prime}, m}^{(0) j}=\left\{\binom{j+m^{\prime}}{m^{\prime}-m}\binom{j-m}{m^{\prime}-m}\right\}^{1 / 2}\left(a_{1}^{1}\right)^{m^{\prime}+m}\left(a_{1}^{2}\right)^{m^{\prime}-m} P_{j-m^{\prime}}^{\left(m^{\prime}-m, m^{\prime}+m\right)}(z)$
where $z \equiv-a_{2}^{1} a_{1}^{2}$. We have similar relations for other cases.

5. Representation functions for $S L_{h}(\mathbf{2})$

5.1. Explicit formulae for D-functions

We saw, in the previous section, that the D-functions for $G L(2)$ form the irreducible tensor operators of both left and right $g l(2)$. This fact leads us to the expectation that the D-functions for $G L_{h}(2)$ also form the irreducible tensor operators of left and right $\mathcal{U}_{h}(g l(2))$. It is known that the tensor operators for $\mathcal{U}_{h}(g l(2))$ can be obtained from the ones for $g l(2)$ by twisting [11,25]. Therefore, we may obtain the D-functions for $G L_{h}(2)$ from the one for $G L(2)$ by twisting twice. The irreducible tensor operators for $\mathcal{U}_{h}(g l(2))$ are defined by replacing the commutator in the LHS of (4.8) and (4.9) with the adjoint action. Let \boldsymbol{t} be a any tensor operator for $\mathcal{U}_{h}(g l(2))$ and $X \in \mathcal{U}_{h}(g l(2))$, then the adjoint action of X on t is defined by [26]

$$
\begin{equation*}
\operatorname{ad} X(\boldsymbol{t})=m(\operatorname{id} \otimes S)(\Delta(X)(\boldsymbol{t} \otimes 1)) . \tag{5.1}
\end{equation*}
$$

The tensor operators t for $\mathcal{U}_{h}(g l(2))$ and the tensor operators $\boldsymbol{t}^{(0)}$ for $g l(2)$ are related via the twist element \mathcal{F} by ([25], see also [11])

$$
\begin{equation*}
\boldsymbol{t}=m(\mathrm{id} \otimes S)\left(\mathcal{F}\left(\boldsymbol{t}^{(0)} \otimes 1\right) \mathcal{F}^{-1}\right) . \tag{5.2}
\end{equation*}
$$

Note that $g l(2)$ and $\mathcal{U}_{h}(g l(2))$ have the same commutation relations so that the realization (4.2), (4.3) is the realization of $\mathcal{U}_{h}(g l(2))$ as well. We consider the tensor operators under this realization of $\mathcal{U}_{h}(g l(2))$.

Let us first consider the simplest case: $j=\frac{1}{2}$. What we obtain in this case from (4.6), (4.8) and (4.9) is that the pairs $\left(a_{1}^{1}, a_{2}^{1}\right),\left(a_{1}^{2}, a_{2}^{2}\right)$ are spinors of the left $g l(2)$ and the pairs $\left(a_{1}^{1}, a_{1}^{2}\right),\left(a_{2}^{1}, a_{2}^{2}\right)$ are spinors of the right $g l(2)$. Namely, each boson operator a_{i}^{j} is a component of spinor for both left and right $g l(2)$. This fact tells us that, by twisting via the elements

$$
\begin{equation*}
\mathcal{F}_{L}=\exp \left(-\frac{1}{2} J_{0} \otimes \sigma_{L}\right) \quad \mathcal{F}_{R}=\exp \left(-\frac{1}{2} K_{0} \otimes \sigma_{R}\right) \tag{5.3}
\end{equation*}
$$

with $\sigma_{L}=-\ln \left(1-2 h J_{+}\right), \sigma_{R}=-\ln \left(1-2 h K_{+}\right)$, we obtain a element of spinor for both left and right $\mathcal{U}_{h}(s l(2))$. To this end, it is convenient to rewrite (5.2) in a different form. Let us write the twist element and its inverse as

$$
\mathcal{F}=\sum_{a} f^{a} \otimes f_{a} \quad \mathcal{F}^{-1}=\sum_{a} g^{a} \otimes g_{a}
$$

then

$$
\mu=\sum_{a} f^{a} S_{0}\left(f_{a}\right) \quad \mu^{-1}=\sum_{a} S_{0}\left(g^{a}\right) g_{a}
$$

Noting the identity

$$
\sum g^{b} \mu S_{0}\left(g_{b}\right)=\sum g^{b} f^{a} S_{0}\left(g_{b} f_{a}\right)=m\left(\mathrm{id} \otimes S_{0}\right)\left(\mathcal{F}^{-1} \mathcal{F}\right)=1
$$

the relation (5.2) yields
$\boldsymbol{t}=\sum f^{a} \boldsymbol{t}^{(0)} g^{b} S\left(f_{a} g_{b}\right)=\sum f^{a} \boldsymbol{t}^{(0)} \mu S_{0}\left(f_{a} g_{b}\right) \mu^{-1}=\sum f^{a} \boldsymbol{t}^{(0)} S_{0}\left(f_{a}\right) \mu^{-1}$.
From (5.4), the twisting by \mathcal{F}_{L} reads

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{1}{2}\right)^{n} J_{0}^{n} a_{i}^{j} S_{0}\left(\sigma_{L}\right) \mu^{-1} & =a_{i}^{j} \sum_{k=0}^{\infty} \frac{(-1)^{i k}}{k!}\left(-\frac{1}{2}\right)^{k} S\left(\sigma_{L}\right)^{k} \\
& =a_{i}^{j} \exp \left\{(-1)^{i} \sigma_{L} / 2\right\}
\end{aligned}
$$

We used the fact that $S\left(\sigma_{L}\right)=-\sigma_{L}$ in the last equality. To twist the above-obtained result by \mathcal{F}_{R}, we can repeat a similar computation. Then we have the doubly twisted boson operators

$$
\begin{equation*}
a_{i}^{j} \exp \left\{(-1)^{i} \sigma_{L} / 2+(-1)^{j+1} \sigma_{R} / 2\right\} \tag{5.5}
\end{equation*}
$$

The commutation relations of the twisted boson operators (5.5) are obtained by straightforward computation, showing that the twisted boson operators give a realization of the generators of $G L_{h}(2)$.

Proposition 5.1. Let

$$
\begin{array}{ll}
x=a_{1}^{1} \mathrm{e}^{\left(-\sigma_{L}+\sigma_{R}\right) / 2} & u=a_{1}^{2} \mathrm{e}^{-\left(\sigma_{L}+\sigma_{R}\right) / 2} \\
v=a_{2}^{1} \mathrm{e}^{\left(\sigma_{L}+\sigma_{R}\right) / 2} & y=a_{2}^{2} \mathrm{e}^{\left(\sigma_{L}-\sigma_{R}\right) / 2} \tag{5.6}
\end{array}
$$

then, x, u, v and y satisfy the commutation relations of the generators of $G L_{h}(2)(2.1)$. In this realization, the central element D is given by

$$
\begin{equation*}
D \equiv x y-u v-h x v=a_{1}^{1} a_{2}^{2}-a_{2}^{1} a_{1}^{2} \tag{5.7}
\end{equation*}
$$

Note that the central element D remains undeformed in this realization.
Proof. One can verify the commutation relations directly. Here we give some useful commutation relations for verification: the commutation relations between σ_{L}, σ_{R} and boson operators,

$$
\begin{array}{ll}
{\left[\sigma_{L}, a_{1}^{1}\right]=2 h \mathrm{e}^{\sigma_{L}} a_{2}^{1}} & {\left[\sigma_{L}, a_{1}^{2}\right]=2 h \mathrm{e}^{\sigma_{L}} a_{2}^{2}} \\
{\left[\sigma_{R}, a_{1}^{2}\right]=2 h \mathrm{e}^{\sigma_{R}} a_{1}^{1}} & {\left[\sigma_{R}, a_{2}^{2}\right]=2 h \mathrm{e}^{\sigma_{R}} a_{2}^{1} .}
\end{array}
$$

These are easily verified by using the power series expansion of $\sigma_{L}, \sigma_{R}: \sigma_{L}=\sum_{n=1}^{\infty} \frac{\left(2 h J_{+}\right)^{n}}{n}$. These relations can be used to prove the following commutation relations which hold for any real k :

$$
\begin{array}{ll}
{\left[\mathrm{e}^{k \sigma_{L}}, a_{1}^{1}\right]=2 h k \mathrm{e}^{(k+1) \sigma_{L}} a_{2}^{1}} & {\left[\mathrm{e}^{k \sigma_{L}}, a_{1}^{2}\right]=2 h k \mathrm{e}^{(k+1) \sigma_{L}} a_{2}^{2}} \\
{\left[\mathrm{e}^{k \sigma_{R}}, a_{1}^{2}\right]=2 h k \mathrm{e}^{(k+1) \sigma_{R}} a_{1}^{1}} & {\left[\mathrm{e}^{k \sigma_{R}}, a_{2}^{2}\right]=2 h k \mathrm{e}^{(k+1) \sigma_{R}} a_{2}^{1} .} \tag{5.8}
\end{array}
$$

Next let us consider the twisting of $\mathcal{D}_{m^{\prime}, m}^{(0) j}$ for any values of j by the twist elements $\mathcal{F}_{L}, \mathcal{F}_{R}$. We denote the doubly twisted $\mathcal{D}_{m^{\prime}, m}^{(0) j}$ by $\mathcal{D}_{m^{\prime}, m}^{j}$, since it will be shown later that this $\mathcal{D}_{m^{\prime}, m}^{j}$ gives the D-functions for $G L_{h}(2)$. The computation is almost the same as for the case of spinors. What we need to compute is the twisting of $\left(a_{1}^{1}\right)^{K}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N}$ in expression (4.6). The twisting by \mathcal{F}_{L} reads

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{1}{2}\right)^{n} J_{0}^{n}\left(a_{1}^{1}\right)^{K}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N} S_{0}^{n}\left(\sigma_{L}\right) \mu^{-1} \\
&=\left(a_{1}^{1}\right)^{K}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N} \sum_{k=0}^{\infty} \frac{1}{k!}\left(-\frac{1}{2}\right)^{k}(-K+L-M+N)^{k} \mu S_{0}^{k}\left(\sigma_{L}\right) \mu^{-1} \\
&=\left(a_{1}^{1}\right)^{K}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N} \exp \left\{-(K-L+M-N) \sigma_{L} / 2\right\}
\end{aligned}
$$

Further twisting by \mathcal{F}_{R} gives
$\left(a_{1}^{1}\right)^{K}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N} \exp \left\{-(K-L+M-N) \sigma_{L} / 2+(K+L-M-N) \sigma_{R} / 2\right\}$.
Because of (4.7), we have $K-L+M-N=2 m^{\prime}$ and $K+L-M-N=2 m$. Thus, the exponential factor in (5.9) is factored out of the sum over K, L, M and N. Therefore, we have proved the following proposition.
Proposition 5.2. In the realization (4.2), (4.3), the irreducible tensor operators of both left and right $\mathcal{U}_{h}(g l(2))$ are given by

$$
\begin{equation*}
\mathcal{D}_{m^{\prime}, m}^{j}=\mathcal{D}_{m^{\prime}, m}^{(0) j} \mathrm{e}^{-m^{\prime} \sigma_{L}+m \sigma_{R}} \tag{5.10}
\end{equation*}
$$

One can write $\mathcal{D}_{m^{\prime}, m}^{j}$ of proposition 5.2 in terms of the generators of $G L_{h}(2)$ by making use of proposition 5.1. For real A, B,

$$
\begin{aligned}
& \left(a_{1}^{1}\right)^{K} \mathrm{e}^{\left(A \sigma_{L}+B \sigma_{R}\right) / 2}=\left(a_{1}^{1}\right)^{K-1} x \mathrm{e}^{(A+1) \sigma_{L} / 2+(B-1) \sigma_{R} / 2} \\
& \quad=\left(a_{1}^{1}\right)^{K-1} \mathrm{e}^{(A+1) \sigma_{L} / 2+(B-1) \sigma_{R} / 2}\left\{\mathrm{e}^{-(A+1) \sigma_{L} / 2} x \mathrm{e}^{(A+1) \sigma_{L} / 2}\right\}
\end{aligned}
$$

The expression $\{\cdots\}$ in the last line can be calculated by using (5.8) and gives $x-h(A+1) v$. Thus, we obtain

$$
\begin{align*}
& \left(a_{1}^{1}\right)^{K} \mathrm{e}^{\left(A \sigma_{L}+B \sigma_{R}\right) / 2}=\mathrm{e}^{(A+K) \sigma_{L} / 2+(B-K) \sigma_{R} / 2} \\
& \quad \times(x-h(A+K) v)(x-h(A+K-1) v) \cdots(x-h(A+1) v) \tag{5.11}
\end{align*}
$$

Similar computation gives three other identities:

$$
\begin{align*}
& \left(a_{2}^{1}\right)^{L} \mathrm{e}^{\left(A \sigma_{L}+B \sigma_{R}\right) / 2}=\mathrm{e}^{(A-L) \sigma_{L} / 2+(B-L) \sigma_{R} / 2} v^{L} \\
& \left(a_{1}^{2}\right)^{M} \mathrm{e}^{\left(A \sigma_{L}+B \sigma_{R}\right) / 2}=\mathrm{e}^{(A+M) \sigma_{L} / 2+(B+M) \sigma_{R} / 2} \\
& \quad \times\left(u-h(B+M) x-h(A+M) y+h^{2}(A+M)(B+M) v\right) \\
& \quad \times(u-h(B+M-1) x-h(A+M-1) y \\
& \left.\quad+h^{2}(A+M-1)(B+M-1) v\right) \tag{5.12}\\
& \quad \times \cdots \times\left(u-h(B+1) x-h(A+1) y+h^{2}(A+1)(B+1) v\right) \\
& \left.\quad \cdots a_{2}^{2}\right)^{N} \mathrm{e}^{\left(A \sigma_{L}+B \sigma_{R}\right) / 2}=\mathrm{e}^{(A-N) \sigma_{L} / 2+(B+N) \sigma_{R} / 2} \\
& \quad \times(y-h(B+N) v)(h-h(B+N-1) v) \cdots(y-h(B+1) v)
\end{align*}
$$

The boson operators a_{i}^{j} commute with one another so that the order of a_{i}^{j} in $\mathcal{D}_{m^{\prime}, m}^{(0) j}$ is irrelevant. Therefore, we can have different expressions of $\mathcal{D}_{m^{\prime}, m}^{j}$ depending on the choice of the order of boson operators. Here we give two of them, and show that they are the representation functions of $G L_{h}(2)$.

Proposition 5.3. The D-function for $G L_{h}(2)$ are given by

$$
\begin{align*}
& \mathcal{D}_{m^{\prime}, m}^{j}=\left\{\left(j+m^{\prime}\right)!\left(j-m^{\prime}\right)!(j+m)!(j-m)!\right\}^{1 / 2} \\
& \times \sum_{K, L, M, L} \frac{X_{K} v^{L} U_{K, L, M} Y_{K, L, M, N}}{K!M!L!N!} \tag{5.13}
\end{align*}
$$

where $X_{K}, U_{K, L, M}$ and $Y_{K, L, M, N}$ are defined by

$$
\begin{aligned}
& X_{K}=x(x+h v) \cdots(x+h(K-1) v) \\
& \begin{aligned}
& U_{K, L, M}=\left(u-h(K+L) x+h(K-L) y-h^{2}\left(K^{2}-L^{2}\right) v\right) \\
& \times\left(u-h(K+L-1) x+h(K-L+1) y-h^{2}\left(K^{2}-(L-1)^{2}\right) v\right) \\
& \times \cdots \times(u-h(K+L-M+1) x+h(K-L+M-1) y \\
&\left.\quad h^{2}\left(K^{2}-(L-M+1)^{2}\right) v\right) \\
& Y_{K, L, M, N}=(y-h(K+L-M) v)(y-h(K+L-M-1) v) \\
& \times \cdots(y-h(K+L-M-N+1) v) .
\end{aligned}
\end{aligned}
$$

The D-functions have another expression which is
$\mathcal{D}_{m^{\prime}, m}^{j}=\left\{\left(j+m^{\prime}\right)!\left(j-m^{\prime}\right)!(j+m)!(j-m)!\right\}^{1 / 2} \sum_{K, L, M, L} \frac{U_{M} X_{K, M} Y_{K, M, N} v^{L}}{K!M!L!N!}$
where $U_{M}, X_{K, M}, Y_{K, M, N}$ are defined by
$U_{M}=u\left(u+h(x+y)+h^{2} v\right) \cdots\left(u+h(M-1)(x+y)+h^{2}(M-1)^{2} v\right)$
$X_{K, M}=(x+h M v)(x+h(M+1) v) \cdots(x+h(K+M-1) v)$
$Y_{K, M, N}=(y-h(K-M) v)(y-h(K-M-1) v) \cdots(y-h(K-M-N+1) v) v^{L}$.
The sum over K, L, M and N runs non-negative integers under the condition (4.7).

Remark. We obtain the D-functions for $S L_{h}(2)$ by putting $D=x y-u v-h x v=1$.

Proof. These expressions are obtained by using (5.11) and (5.12). Expression (5.13) corresponds to the boson ordering $\left(a_{1}^{1}\right)^{k}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N}$, while (5.14) corresponds to $\left(a_{1}^{2}\right)^{M}\left(a_{1}^{1}\right)^{K}\left(a_{2}^{2}\right)^{N}\left(a_{2}^{1}\right)^{L}$.

To show that $\mathcal{D}_{m^{\prime}, m}^{j}$ are the representation functions of $G L_{h}(2)$, we must verify (2.8). It is obvious that $\mathcal{D}_{m^{\prime}, m}^{j} \in G L_{h}(2)$ and the co-unit of $\mathcal{D}_{m^{\prime}, m}^{j}$ is easily verified by using $\epsilon(x)=\epsilon(y)=1, \epsilon(u)=\epsilon(v)=0$. However, it seems to be difficult to verify the coproduct of $\mathcal{D}_{m^{\prime}, m}^{j}$ by straightforward computation. Instead of verifying the coproduct, we show that $\mathcal{D}_{m^{\prime}, m}^{j}$ satisfy the recurrence relations of proposition 3.5 . Note that the recurrence relations of proposition 3.5 are for $S L_{h}(2)$. The Jordanian deformation of the Lie algebra $g l(2)$ considered in this paper is the direct sum of the deformed $s l(2)$ and undeformed $u(1)$: $\mathcal{U}_{h}(g l(2))=\mathcal{U}_{h}(s l(2)) \oplus u(1)$. This implies that the CGCs for $\mathcal{U}_{h}(s l(2))$ also give the CGCs for $\mathcal{U}_{h}(g l(2))$. Therefore, the D-functions for $G L_{h}(2)$ also satisfy the recurrence relations of proposition 3.5.

As an example, we show that the $\mathcal{D}_{m^{\prime}, m}^{j}$ give the solutions to the recurrence relation (ii) of proposition 3.5. We substitute expression (5.14) of the D-functions into the first term of the RHS of (ii), then replace the dummy index L with $L-1$. It follows that

$$
\begin{gathered}
\sqrt{j+m} \mathcal{D}_{k-\frac{1}{2}, m-\frac{1}{2}}^{j-\frac{1}{2}} v=\{(j+m)!(j-m)!(j+k-1)!(j-k)!\}^{1 / 2} \\
\times \sum_{K, L, M, N} L \frac{U_{M} X_{K, M} Y_{K, M, N} v^{L}}{K!M!L!N!}
\end{gathered}
$$

where the indices K, L, M and N satisfy the condition

$$
\begin{array}{lr}
K+L=j+m & M+N=j-m \\
K+M=j+k-1 & L+N=j-k+1 . \tag{5.15}
\end{array}
$$

For the second term in the RHS of (ii), we use (5.13). Replacing the index N with $N-1$, we obtain

$$
\begin{aligned}
& \sqrt{j-m} \mathcal{D}_{k-\frac{1}{2}, m+\frac{1}{2}}^{j-\frac{1}{2}} \\
&=\{(j+m)!(j-m)!(j+k-1)!(j-k)!\}^{1 / 2} \\
& \times \sum_{K, L, M, N} N \frac{X_{K} v^{L} U_{K, L, M} Y_{K, L, M, N}}{K!M!L!N!}
\end{aligned}
$$

where the indices K, L, M and N also satisfy (5.15). Since the expressions (5.13) and (5.14) are different expressions of the same D-functions, it holds that $U_{M} X_{K, M} Y_{K, M, N} v^{L}=$ $X_{K} v^{L} U_{K, L, M} Y_{K, L, M, N}$. Therefore, the RHS of (ii) reads

$$
\begin{aligned}
& \{(j+m)!(j-m)!(j+k-1)!(j-k)!\}^{1 / 2} \sum_{K, L, M, N}(L+N) \frac{X_{K} v^{L} U_{K, L, M} Y_{K, L, M, N}}{K!M!L!N!} \\
& \quad=\sqrt{j-k+1} \mathcal{D}_{k-1, m}^{j}
\end{aligned}
$$

The four-term recurrence relation (i) of proposition 3.5 is reduced to a three-term relation, by eliminating $\mathcal{D}_{k-1, m}^{j}$ from (i) and (ii). This recurrence relation is easily solved by using another expression of $\mathcal{D}_{k, m}^{j}$ corresponding to another ordering of boson operators. The suitable expressions for solving it are the ones obtained from the ordering $\left(a_{1}^{2}\right)^{M}\left(a_{2}^{2}\right)^{N}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{1}\right)^{K}$ and $\left(a_{1}^{1}\right)^{K}\left(a_{2}^{2}\right)^{N}\left(a_{2}^{1}\right)^{L}\left(a_{1}^{2}\right)^{M}$. In this way, we can verify that the $\mathcal{D}_{m^{\prime}, m}^{j}$ obtained in this proposition solve all the recurrence relations given in proposition 3.5.

Both (5.13) and (5.14), of course, give the generators of $G L_{h}(2)$ for $j=\frac{1}{2}$ which reflects proposition 3.4. The D-functions for $j=1$ read

$$
\mathcal{D}^{1}=\left(\begin{array}{ccc}
x^{2}+h x v & \sqrt{2}(u x+h u v) & u^{2}+h(u x+u y+h u v) \tag{5.16}\\
\sqrt{2} x v & D+2 u v & \sqrt{2}(u y+h u v) \\
v^{2} & \sqrt{2} y v & y^{2}+h y v
\end{array}\right) .
$$

For $S L_{h}(2)$, i.e. putting $D=1$, this coincides with the expression obtained by using the h-symplecton or quantum h-plane [11]. Chakrabarti and Quesne obtained the \mathcal{D}^{1} for two-parametric Jordanian deformation of $G L(2)$ in the coloured representation through a contraction technique to the D-functions for standard (q, λ)-deformation of $G L(2)$ [9]. To compare the present \mathcal{D}^{1} with the one given in [9], put $\alpha=0, z=1$ in equations (4.20) and (4.21) of [9]. Then we see that the D-functions for $j=1$ of [9] are different from (5.16). This difference stems from the different choice of the basis of $\mathcal{U}_{h}(s l(2))$. In [9], the basis introduced by Ohn [27] is used, that is, the commutation relations of the generators of $\mathcal{U}_{h}(s l(2))$ are not the same as those of $\operatorname{sl}(2)$, while the basis of this paper satisfies the same commutation
relations as $\operatorname{sl}(2)$. This results in different CGCs for the same algebra so that the recurrence relations for the D-functions have different form. The CGCs for Ohn's basis are found in [20]. Repeating the same procedure as in section 3.2, we obtain another form of recurrence relations. It should be easy to verify that the \mathcal{D}^{1} of [9] solves these recurrence relations.

5.2. $S L_{h}(2)$ D-Functions and Jacobi polynomials

The purpose of this section is to show that the D-functions for $S L_{h}(2)$ can be expressed in terms of Jacobi polynomials. To this end, we return to the boson realization of D-functions (proposition 5.2) and use the fact that the D-functions for Lie group $S L(2)$ are written in terms of Jacobi polynomials. Recall the following two facts: (1) the central element D of $G L_{h}(2)$ is not deformed in the boson realization (5.7), (2) Jacobi polynomials in the D-functions for $S L(2)$ are power series in the variable $z=-a_{2}^{1} a_{1}^{2}$. We write the D-functions $\mathcal{D}_{m^{\prime}, m}^{(0) j}$ for $S L(2)$ in (5.10) in terms of Jacobi polynomials and then use the easily proved relation $\left(a_{2}^{1} a_{1}^{2}\right)^{r}=(u v)^{r}$ in order to replace the variable $z=-a_{2}^{1} a_{1}^{2}$ with the h-deformed one $z=-u v$. Let us consider, as an example, the case of $m^{\prime}+m \geqslant 0, m^{\prime} \geqslant m$. The $\mathcal{D}_{m^{\prime}, m}^{(0) j}$ are given by (4.11). We rearrange the order of a_{1}^{1}, a_{1}^{2} and $P_{j-m^{\prime}}^{\left(m^{\prime}-m, m^{\prime}+m\right)}(z)$ to be $P_{j-m^{\prime}}^{\left(m^{\prime}-m, m^{\prime}+m\right)}(z)\left(a_{1}^{2}\right)^{m^{\prime}-m}\left(a_{1}^{1}\right)^{m^{\prime}+m}$. Using (5.11) and (5.12), we see that

$$
\begin{aligned}
&\left(a_{1}^{2}\right)^{m^{\prime}-m}\left(a_{1}^{1}\right)^{m^{\prime}+m} \mathrm{e}^{-m^{\prime} \sigma_{L}+m \sigma_{R}} \\
&= u\left(u+h(x+y)+h^{2} v\right) \cdots\left(u+h\left(m^{\prime}-m-1\right)(x+y)+h^{2}\left(m^{\prime}-m-1\right)^{2} v\right) \\
& \quad \times\left(x+h\left(m^{\prime}-m\right) v\right)\left(x+h\left(m^{\prime}-m-1\right) v\right) \cdots\left(x+h\left(2 m^{\prime}-1\right) v\right) .
\end{aligned}
$$

This completes the expression of D-functions in terms of Jacobi polynomials.
Repeating this process for other cases, we can prove the next proposition.
Proposition 5.4. The D-functions for $S L_{h}(2)$ are written in terms of Jacobi polynomials as follows:
(i) $m^{\prime}+m \geqslant 0, m^{\prime} \geqslant m$

$$
\begin{aligned}
\mathcal{D}_{m^{\prime}, m}^{j}=N_{+} & P_{j-m^{\prime}}^{\left(m^{\prime}-m, m^{\prime}+m\right)}(z) \\
& \times u\left(u+h(x+y)+h^{2} v\right) \cdots\left(u+h\left(m^{\prime}-m-1\right)(x+y)\right. \\
& \left.+h^{2}\left(m^{\prime}-m-1\right)^{2} v\right) \\
& \times\left(x+h\left(m^{\prime}-m\right) v\right)\left(x+h\left(m^{\prime}-m-1\right) v\right) \cdots\left(x+h\left(2 m^{\prime}-1\right) v\right) .
\end{aligned}
$$

(ii) $m^{\prime}+m \geqslant 0, m^{\prime} \leqslant m$

$$
\mathcal{D}_{m^{\prime}, m}^{j}=N_{-} P_{j-m}^{\left(-m^{\prime}+m, m^{\prime}+m\right)}(z) x(x+h v) \cdots\left(x+h\left(m^{\prime}+m-1\right) v\right) v^{-m^{\prime}+m} .
$$

(iii) $m^{\prime}+m \leqslant 0, m^{\prime} \geqslant m$

$$
\begin{aligned}
\mathcal{D}_{m^{\prime}, m}^{j}=N_{+} & P_{j+m}^{\left(m^{\prime}-m,-m^{\prime}-m\right)}(z) \\
& \quad \times u\left(u+h(x+y)+h^{2} v\right) \cdots\left(u+h\left(m^{\prime}-m-1\right)(x+y)\right. \\
& \left.+h^{2}\left(m^{\prime}-m-1\right)^{2} v\right) \\
& \times\left(y-h\left(m-m^{\prime}\right) v\right)\left(y-h\left(m-m^{\prime}-1\right) v\right) \cdots(y-h(2 m+1) v) .
\end{aligned}
$$

(iv) $m^{\prime}+m \leqslant 0, m^{\prime} \leqslant m$

$$
\begin{aligned}
\mathcal{D}_{m^{\prime}, m}^{j}= & N_{-} \\
& P_{j+m^{\prime}}^{\left(-m^{\prime}+m,-m^{\prime}-m\right)}(z) \\
& \times v^{-m^{\prime}+m}\left(y-h\left(m-m^{\prime}\right) v\right)\left(y-h\left(m-m^{\prime}-1\right) v\right) \cdots(y-h(2 m+1) v) .
\end{aligned}
$$

The variable z is defined by $z=-u v$ and the factors N_{+}, N_{-}by

$$
N_{+}=\left\{\binom{j+m^{\prime}}{m^{\prime}-m}\binom{j-m}{m^{\prime}-m}\right\}^{1 / 2} \quad N_{-}=\left\{\binom{j-m^{\prime}}{m-m^{\prime}}\binom{j+m}{m-m^{\prime}}\right\}^{1 / 2} .
$$

Remark. The Jacobi polynomials are to the left of the generators of $S L_{h}(2)$. To move $P_{n}^{(\alpha, \beta)}(z)$ to the right, the relation

$$
(u v)^{r} \exp \left(-m^{\prime} \sigma_{L}+m \sigma_{R}\right)=\exp \left(-m^{\prime} \sigma_{L}+m \sigma_{R}\right)\left\{u v-2 h\left(-m^{\prime} y v+m x v\right)-4 h^{2} m m^{\prime} v^{2}\right\}^{r}
$$

is used and we see that the Jacobi polynomials are changed to the power series in $\zeta_{m^{\prime}, m}=$ $-\left(u+2 h\left(m^{\prime} y-m x\right)-4 h^{2} m m^{\prime}\right) v$, but the rest of the formulae remain unchanged.

6. Boson realization of $G L_{h, g}(2)$

It is natural to generalize the results in the previous section to the two-parametric Jordanian deformation of $G L(2)$ [28], since the twist element which generates the two-parametric Jordanian quantum algebra $\mathcal{U}_{h, g}(g l(2))$ [29,30] is known [31]. Unfortunately, the method of the previous sections leads us to quite complex calculations. As the first step to obtaining the D-functions for two-parametric Jordanian quantum group $G L_{h, g}(2)$, we here give the boson realization of the generators of $G L_{h, g}(2)$.

The left and right twist elements are given by

$$
\begin{aligned}
& \mathcal{F}_{L}=\exp \left(\frac{g}{2 h} \sigma_{L} \otimes Z_{L}\right) \exp \left(-\frac{1}{2} J_{0} \otimes \sigma_{L}\right) \\
& \mathcal{F}_{R}=\exp \left(\frac{g}{2 h} \sigma_{R} \otimes Z_{R}\right) \exp \left(-\frac{1}{2} K_{0} \otimes \sigma_{R}\right)
\end{aligned}
$$

respectively. We can see that the $G L_{h, g}(2)$ is reduced to $G L_{h}(2)$ when $g=0$. Repeating the same procedure as (5.5), we obtain the twisted boson operators. We can rewrite the twisted boson operators in terms of the generators $G L_{h}(2)$. The next proposition can be regarded as a realization of $G L_{h, g}(2)$ by generators of $G L_{h}(2)$ and Z_{L}, Z_{R} as well.

Proposition 6.1. Let

$$
\begin{align*}
& a=x-g v Z_{L} \quad b=u-g x Z_{R}-g y Z_{L}+g^{2} v Z_{L} Z_{R} \tag{6.1}\\
& c=v \quad d=y-g v Z_{R}
\end{align*}
$$

where x, u, v and y are given by (5.6). Then a, b, c and d satisfy the commutation relation of $G L_{h, g}(2)$.

Remark. In this realization, the quantum determinants $D^{\prime}=a d-b c-(h+g) a c$ for $G L_{h, g}(2)$ and D for $G L_{h}(2)$ coincide: $D^{\prime}=D=a_{1}^{1} a_{2}^{2}-a_{2}^{1} a_{1}^{2}$.

Proof. The proof requires lengthy calculation, but is straightforward. The following commutation relations [28] are verified:

$$
\begin{array}{lc}
{[a, b]=-(h+g)\left(D^{\prime}-a^{2}\right)} & {[a, c]=-(h-g) c^{2}} \\
{[a, d]=(h+g) a c-(h-g) d c} & {[b, c]=-(h+g) a c-(h-g) c d} \\
{[b, d]=(h-g)\left(D^{\prime}-d^{2}\right)} & {[c, d]=(h+g) c^{2} .} \tag{6.2}
\end{array}
$$

7. Concluding remarks

In this paper, the explicit formulae of the D-functions for $S L_{h}(2)$ (and $G L_{h}(2)$) have been obtained by using the tensor operator technique. We used the fact that the D-functions for Lie group $G L(2)$ form irreducible tensor operators of $g l(2) \oplus g l(2)$ in the realization (4.2), (4.3). This kind of tensor operator is called a double irreducible tensor operator in the literature. The D-functions for $G L_{h}(2)$ were obtained via the construction of double irreducible tensor operators for $\mathcal{U}_{h}(g l(2)) \oplus \mathcal{U}_{h}(g l(2))$. Other examples of double irreducible tensor operators were considered for q-deformation [32,33] and for Jordanian deformation [34]. Quesne constructed the $G L_{h}(n) \times G L_{h^{\prime}}(m)$ covariant bosonic and fermionic algebra which form the double irreducible tensor operators of $\mathcal{U}_{h}(g l(n)) \oplus \mathcal{U}_{h^{\prime}}(g l(m))$ using the contraction method [34]. This suggests, in the case of $n=m=2$ and $h=h^{\prime}$, that the bosonic algebra of Quesne has a close relation to $\mathcal{D}_{m^{\prime}, m}^{\frac{1}{2}}$, i.e. the generators of $G L_{h}(2)$.

We also showed that the D-functions for $S L_{h}(2)$ can be expressed in terms of Jacobi polynomials. Contrary to the q-deformed case where the little q-Jacobi polynomials appear in the D-functions for $S U_{q}(2)$, the ordinary Jacobi polynomials are associated with the D functions for $S L_{h}(2)$. It seems to be a general feature of Jordanian deformation that the ordinary orthogonal polynomials are associated with the representations. It is known that the ordinary Gauss hypergeometric functions are associated with the h-symplecton [11], while the q-hypergeometric functions are associated with q-deformation of the symplecton.

The extension of the results of this paper to the Jordanian deformation of $S L(n)$ should be possible, since the explicit expressions for the twist element are known for the Lie algebra $s l(n)$ [35].

References

[1] Kupershmidt B A 1992 J. Phys. A: Math. Gen. 25 L1239
[2] Reshetikhin N Yu, Takhtadzhyan L A and Faddeev L D 1990 Leningrad Math. J. 1193
[3] Demidov E E et al 1990 Prog. Theor. Phys. Suppl. 102203
[4] Zakrewski S 1991 Lett. Math. Phys. 22287
[5] Ewen H, Ogievetsky O and Wess J 1991 Lett. Math. Phys. 22297
[6] Biedenharn L C and Lohe M A 1995 Quantum Group Symmetry and q-Tensor Algebras (Singapore: World Scientific)
[7] Chaichian M and Demichev A 1996 Introduction to Quantum Groups (Singapore: World Scientific)
[8] Karimipour V 1994 Lett. Math. Phys. 3087 Karimipour V 1995 Lett. Math. Phys. 35303 Cho S, Madore J and Park K S 1998 J. Phys. A: Math. Gen. 312639 Madore J and Steinacker H 2000 J. Phys. A: Math. Gen. 33327
[9] Chakrabarti R and Quesne C 1999 Int. J. Mod. Phys. A 142511
[10] Aghamohammadi A 1993 Mod. Phys. Lett. A 82607
[11] Aizawa N 1999 J. Math. Phys. 405921
[12] Vaksman L L and Soibel'man Ya S 1988 Funct. Anal. Appl. 22170 Koornwinder T H 1989 Indag. Math. 5197
[13] Groza V A, Kacurik I I and Klimyk A U 1990 J. Math. Phys. 312769
[14] Nomura M 1990 J. Phys. Soc. Japan 594260
[15] Masuda T et al 1991 J. Funct. Anal. 99357
[16] Nomura M 1991 J. Phys. Soc. Japan 60710
[17] Drinfeld V G 1990 Leningrad Math. J. 11419
[18] Ogievetsky O V 1993 Proc. Winter School on Geometry and Physics (Zidkov), Suppl. Rendiconti cir. Math. Palermo, Serie II N 37185
[19] Aizawa N 1997 J. Phys. A: Math. Gen. 305981
[20] Van der Jeugt J 1998 J. Phys. A: Math. Gen. 311495 Czech 1997 J. Physique 471283
[21] Drinfeld V G 1987 Quantum groups Proc. Int. Congress of Math. (Berkeley, 1986) vol 1, ed A V Gleason, p 798
[22] Fronsdal C and Galindo A 1993 Lett. Math. Phys. 2759
[23] Jagannathan R and Van der Jeugt J 1995 J. Phys. A: Math. Gen. 282819
[24] Bonechi F et al 1994 J. Phys. A: Math. Gen. 271307
[25] Fiore G 1998 J. Math. Phys. 393437
[26] Rittenberg V and Scheunert M 1992 J. Math. Phys. 333636
[27] Ohn Ch 1992 Lett. Math. Phys. 2585
[28] Aghamohammadi A 1993 Mod. Phys. Lett. A 82607
[29] Aneva B L, Dobrev V K and Mihov S G 1997 J. Phys. A: Math. Gen. 306769
[30] Parashar P 1998 Lett. Math. Phys. 45105
[31] Aizawa N 1998 Czech. J. Phys. 481273
[32] Quesne C 1993 Phys. Lett. B 298344
Quesne C 1994 Phys. Lett. B 322344
[33] Fiore G 1998 J. Phys. A: Math. Gen. 315289
[34] Quesne C 1999 Int. J. Theor. Phys. 381905
[35] Kulish P P, Lyakhovsky V D and Mudrov A I 1998 Extended Jordanian twists for Lie algebras Preprint math.QA/9806014

